The Impact of Garbage Collection on Application Performance

Chapter: Memory Management

As we’ve seen, the performance of the garbage collector is not determined by the number of dead objects, but rather by the number of live ones. The more objects die, the faster garbage collection is. If every object in the heap were to be garbage-collected, the GC cycle would be nearly instantaneous. Additionally, the garbage collector must suspend the execution of the application to ensure the integrity of the object trees. The more live objects are found, the longer the suspension, which has a direct impact on response time and throughput.

This fundamental tenet of garbage collection and the resulting effect on application execution is called the garbage-collection pause or GC pause time. In applications with multiple threads, this can quickly lead to scalability problems.

This graphic from the Oracle GC Tuning article illustrates the performance hit of GC suspensions with increasing number of CPUs.

Figure 2.4: This graphic from an Oracle GC Tuning article illustrates the performance hit of GC suspensions with increasing number of CPUs. (Source: http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html)

Figure 2.4 illustrates the impact that GC suspensions have on the throughput of multithreaded applications. An application that spends 1% of its execution time on garbage collection will loose more than 20% throughput on a 32-processor system. If we increase the GC time to 2%, the overall throughput will drop by another 20%. Such is the impact of suspending 32 executing threads simultaneously!

There are two commonly used methods to reduce GC pause time:

But before we examine ways to improve garbage-collection performance, you should understand memory fragmentation, which impacts suspension time and application performance.

About Fragmented Memory and Finding a Big Enough Hole

Whenever we create a new object in Java, the JVM automatically allocates a block of memory large enough to fit the new object on the heap. Repeated allocation and reclamation leads to memory fragmentation, which is similar to disk fragmentation. Memory fragmentation leads to two problems:

Java does not rely on the operating system to solve these problems and must deal with these itself. Java avoids memory fragmentation by executing compaction (Figure 2.5) at the end of a successful GC cycle. The process is very similar to hard-disk defragmentation.

When the heap becomes fragmented due to repeated allocations and garbage collections, the JVM executes a compaction step, which alligns all objects neatly and closes all holes.

Figure 2.5: When the heap becomes fragmented due to repeated allocations and garbage collections, the JVM executes a compaction step, which aligns all objects neatly and closes all holes.

Compacting simply moves all live objects to one end of the heap, which effectively closes all holes. Objects can be allocated at full speed (no free lists are needed anymore), and problems creating large objects are avoided.

The downside is an even longer GC cycle, and since most JVMs suspend the application execution during compaction, the performance impact can be considerable.

Read the Java enterprise performance eBook online

Chapter: Application Performance Concepts

Differentiating Performance from Scalability

Calculating Performance Data

Collecting Performance Data

Collecting and Analyzing Execution Time Data

Visualizing Performance Data

Controlling Measurement Overhead

Theory Behind Performance

How Humans Perceive Performance

Chapter: Memory Management

How Garbage Collection Works

The Impact of Garbage Collection on application performance

Reducing Garbage Collection Pause time

Making Garbage Collection faster

Not all JVMS are created equal

Analyzing the Performance impact of Memory Utilization and Garbage Collection

Tuning

GC Configuration Problems

The different kinds of Java memory leaks and how to analyse them

High Memory utilization and their root causes

Classloader releated memory issues

Out-Of-Memory, Churn Rate and more

Chapter: Performance Engineering

Approaching Performance Engineering Afresh

Agile Principles for Performance Evaluation

Employing Dynamic Architecture Validation

Performance in Continuous Integration

Enforcing Development Best Practices

Load Testing—Essential and Not Difficult!

Load Testing in the Era of Web 2.0

Chapter: Virtualization and Cloud Performance

Introduction to Performance Monitoring in virtualized and Cloud Environments

IaaS, PaaS and Saas – All Cloud, All different

Virtualization’s Impact on Performance Management

Monitoring Applications in Virtualized Environments

Monitoring and Understanding Application Performance in The Cloud

Performance Analysis and Resolution of Cloud Applications

Start your 30-day free Java monitoring trial!

Try for free Contact us