Using Multi-System Monitoring Time Series to Predict Performance Events


Contributors:
  • Andreas Schörgenhumer
  • Peter Chalupar
  • Hanspeter Mössenböck
  • Paul Grünbacher
SSP '18: 9th Symposium on Software Performance | 2025

The prediction of failures and other mission-critical events plays an important role in operating today’s software systems and has drawn the attention of many researchers. Event prediction is particularly challenging if multiple systems are involved. In this paper, we thus present an event prediction model which utilizes time series monitoring data from multiple software systems to predict performance events. Our approach incorporates a comprehensive, multi-system data preprocessing framework for creating various feature vector sets, which we then use to train a random forest classifier to evaluate our multi-system event prediction. Our preliminary evaluation based on data from monitoring 250 systems over a period of 20 days shows promising results.

Meet the contributors

See all publications

Get involved

We enable the best engineers and researchers to work on challenging problems and develop cutting-edge solutions ready to be applied to real-world use cases. If you are curious about the many exciting opportunities waiting for you.
Full wave bg