The balancing principle for parameter choice in distance-regularized domain adaptation


Contributors:
  • Werner Zellinger
  • Natalia Shepeleva,
  • Hamid Eghbal-zadeh
  • Hoan Duc Nguyen
  • Bernhard Nessler
  • Sergei Pereverzyev
  • Bernhard A. Moser
NeurIPS '21: Advances in Neural Information Processing Systems 34 | 2025

We address the unsolved algorithm design problem of choosing a justified regularization parameter in unsupervised domain adaptation. This problem is intriguing as no labels are available in the target domain. Our approach starts with the observation that the widely-used method of minimizing the source error, penalized by a distance measure between source and target feature representations, shares characteristics with regularized ill-posed inverse problems. Regularization parameters in inverse problems are optimally chosen by the fundamental principle of balancing approximation and sampling errors. We use this principle to balance learning errors and domain distance in a target error bound. As a result, we obtain a theoretically justified rule for the choice of the regularization parameter. In contrast to the state of the art, our approach allows source and target distributions with disjoint supports. An empirical comparative study on benchmark datasets underpins the performance of our approach.

Meet the contributors

See all publications

Get involved

We enable the best engineers and researchers to work on challenging problems and develop cutting-edge solutions ready to be applied to real-world use cases. If you are curious about the many exciting opportunities waiting for you.
Full wave bg