ExaLogLog: Space-Efficient and Practical Approximate Distinct Counting up to the Exa-Scale


Contributors:
EDBT '25: Proceedings 28th International Conference on Extending Database Technology | 2025

This work introduces ExaLogLog, a new data structure for approximate distinct counting, which has the same practical properties as the popular HyperLogLog algorithm. It is commutative, idempotent, mergeable, reducible, has a constant-time insert operation, and supports distinct counts up to the exa-scale. At the same time, as theoretically derived and experimentally verified, it requires 43% less space to achieve the same estimation error.

Meet the contributors

See all publications

Get involved

We enable the best engineers and researchers to work on challenging problems and develop cutting-edge solutions ready to be applied to real-world use cases. If you are curious about the many exciting opportunities waiting for you.
Full wave bg